Ca, Phos and Vitamin D Metabolism in Pre-Dialysis Patients

A. WADGYMAR, MD Credit Valley Hospital, Mississauga, Ontario, Canada.

Case: 22 y/o referred to Renal Clinic

Phosphate: 3.9 mmol/L Calcium: $1.9 \, \text{mmol/L}$ PTH: 99 pmol/L What do you fix first?

Case: A.M. 29 y/o Man with ESRD on Peritoneal Dialysis

- Renal Diagnosis: ESRD due to FSGS
- Jan/1999 started Peritoneal Dialysis
- With no OHIP coverage
- Jan/1999 Advanced 2-HPT (PTH 99)
- Multiple Ectopic Calcifications by 2003:
- Left shoulder, right elbow, right hip vascular calcifications.

SECONDARY HYPERPARATHYROIDISM (HPT) IN PATIENTS WITH CHRONIC RENAL DISEASE (CRD).

Secondary Hyperparathyroidism

- 1993: CRD, Biopsy: FSGS
- 1999: 23 y/M: started CAPD complaining of joint and muscle aches;
 X-rays showed multiple soft tissue calcifications

	<u>1999</u>	<u>2001</u>	<u>2003</u>	<u>2006</u>	
Ca	1.90	2.10	2.55	2.23	mmol/L
P	3.9	2.5	1.96	1.73	mmol/L
PTH	99	100	3 0	11	pmol/L

Case: 56 man on hemodialysis

- Renal Dx: ESRD 20 SLE; Failed kidney Tx.
- On PD from 1991 to 1997
- Kidney Transplant 1997
- 2000 failed Transplant, back on Hemodialysis
- 2000: PTH 50; Phos 2.07 Ca 2.10
- 2002: PTH 10; Phos 1.46 Ca 2.70

What is the life expectancy of patients on dialysis?

- The mean life span at age 49 in the USA is 30 years in the general population.
- In a patient starting dialysis at age 49 in the USA the life span is 6 to 10 years (AJKD: 2006).
- Compare this to the waiting list for transplants.
- What is the cause of death for most patients?
- Cardiovascular disease.

Morbidity and Mortality in ESRD

- What is the life expectancy of patients with ESRD?
- What factors increase the Morbidity and Mortality in ESRD?
- General Factors: Age, Sex, Renal Diagnosis
- Disease Factors: Cardiovascular Disease, DM
- Cardiovascular Disease Factors: smoking, DM, HTN, disruption of Ca/P Metabolism.

K/DOQI Target range of P04, PTH & Ca

CRD-3
30-59 *

<u>PO4</u>

<u>Ca</u>

PTH

<1.49*

2.1-2.54

<8.0 pmol/L

<u>CRD-4</u>

15-29*

<1.49

2.1-2.54

<12.1

<u>CRD-5</u>

Dialysis

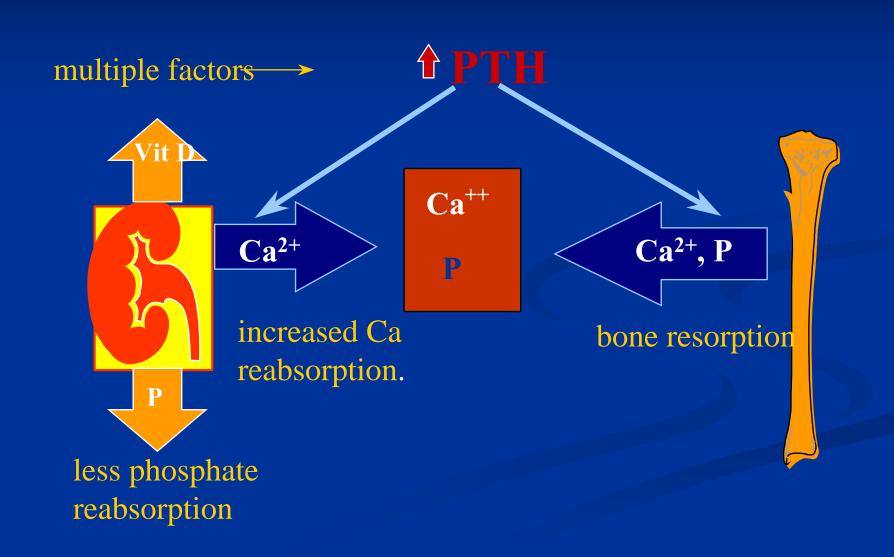
<1.78

2.1-2.54

<33.0

*PO4 0.87-1.49 mmol/L

Ca 2.1-2.54 mmol/L


PTH: 3.8-7.7 pmol/L

When do you measure Vitamin-D?

Questions

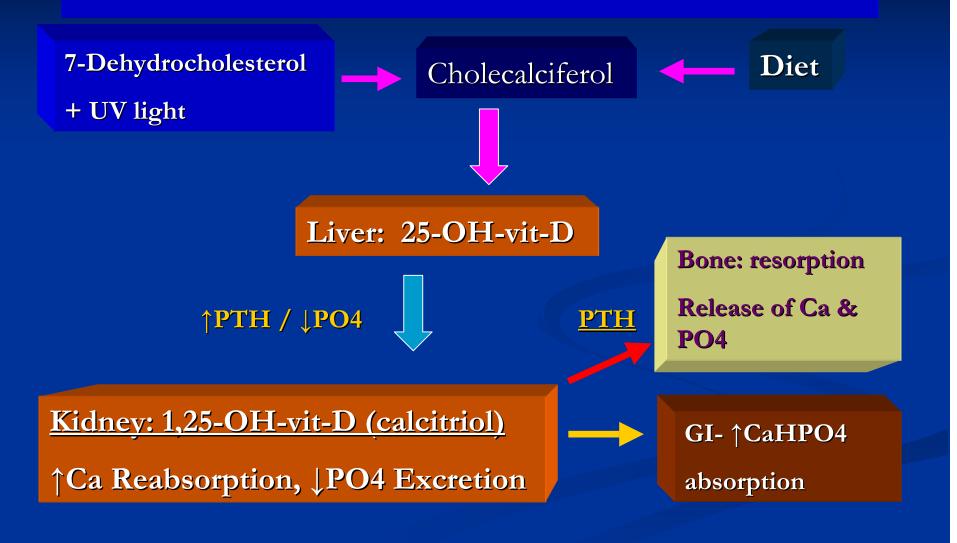
- Why does Phosphate (PO4) goes up during chronic renal disease (CRD)?
- What happens to Calcium **(Ca)** during the progression of **CRD?**
- Why does **PTH** goes up during **CRD?**
- What are the consequences of this anormalities? How do we treat them?

PTH biological actions

What happens in CRD?

Reduced filtered PO4

Reduced 1,25-Vit-D



↑ **PO**4

Secondary Hyperparathyroidism:

 $Ca^2 + HPO4 \rightarrow CaHPO4$

Vitamin D Metabolism

Controversies in the Management of Secondary Hyperparathyroidism

- What is the result of bringing PTH levels down? Is that good or bad?
- Does it improve morbidity and mortality?
- Does correcting PTH levels increase de incidence of adynamic bone disease?
- Does it reverse calcifications in tissues?
- Does it reduce cardiovascular mortality?
- Block, GA: KI 2005; 68:1815

Table 1. Characteristics of a stage 3 & 4-CRD Clinic Population (n=508 patients)

•	Age (mean)	67 (range 22-89)		
•	Females	35 %		
•	Males	65 %		
•	Cause of ESRD			
	Diabetes	43 %		
	Hypertension	17 %		
	Primary Renal Disease	40 %		
•	PTH > 20 pmol/L (3x normal)	34 %		
•	Ca < 2.2 mmol/L	40 %		
•	PTH > 20 & Ca < 2.2	22 %		
	Serum Creatinines Range	150-500 umol/L		

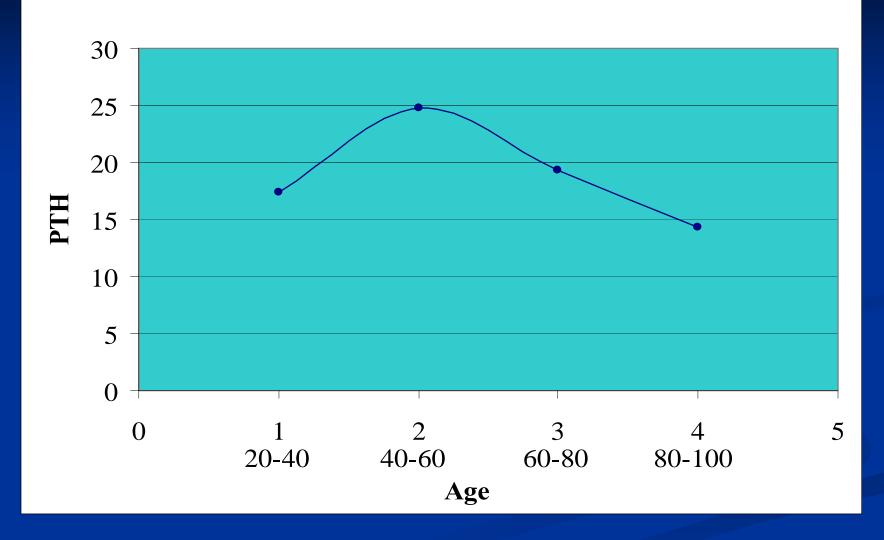


Table 3. Baseline characteristics of the treatment groups

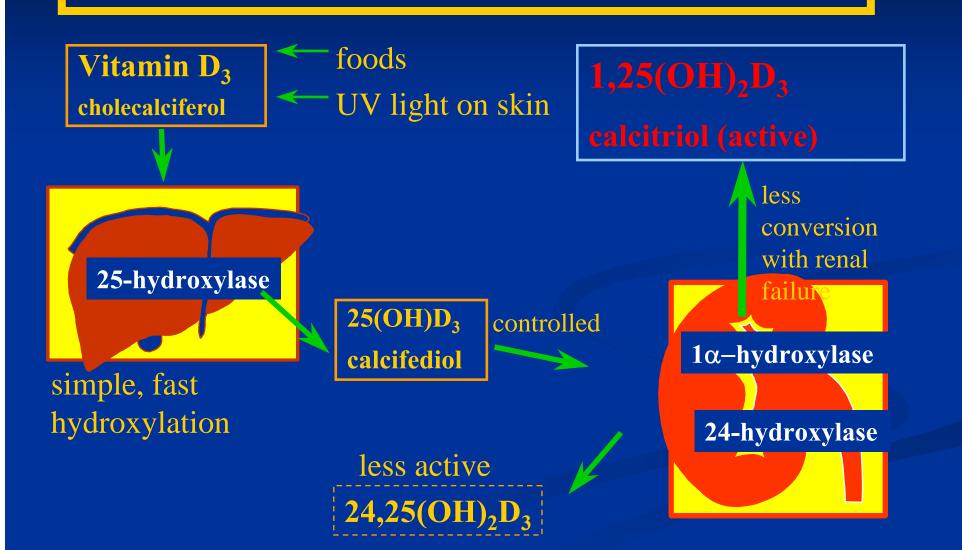
		Alfacalcidol	<u>Calcitriol</u>
-	Patients (number)	43	33
-	Gender (female/male)	13/30	18/15
_	Age (mean ± SD)	60 ± 15	63 ± 11
_	Diabetics (number)	13	14
-	Hypertension/Vascular	7	6
-	Primary Renal Disease	23	13
_	Creatinine (mmol/L; mean +SD)	372 ± 112	351 ± 85
-	Creatinine Clearance (ml/s)	0.31 ± 0.13	0.29 ± 0.1
-	Ca (mmol/L)	2.13 ± 0.24	2.17 ± 0.17
-	P (mmol/L)	1.53 ± 0.38	1.45 ± 0.24
_	PTH (pmol/L)	38 ± 23	44 ± 22

Management of 2° HPT

- Diet restriction of PO4
- Phosphate binders: CaCO3 & Renagel
- Vitamin D sterols: Calcitriol & Alfacalcidol & Doxecalciferol
- Calcimimetics: Cinacalcet

Cost of Treatment

CaCO3	500 mg	\$0.05/tab	6.00/mo
Calcitriol	0.25 mcg	\$0.97/cap	\$30.00/mo
Alfacalcidol	0.25 mcg	\$0.45/cap	\$15.00/mo
Hectorol	2.5 mcg	\$1.70/cap	\$82.00/mo
Renagel	800 mg	\$1.72/tab	\$200-400/m
Sensipar	30 mg	\$10.70/tab	\$320-960/m


Conclusions

- HPT and Hyperphosphatemia should be identified and treated early in CRD
- Approximately 30% of patients with CRD stage 3-4 already have HPT
- In the future treatment for HPT should be tailored to each patient and may include combinations of diet, phosphate binders, vitamin-D and Cinacalcet

Conclusions

- In order to reduce the risk of adynamic bone disease and
- To reduce the incidence of tissue calcification and
- To reduce morbidity and mortality
- Therapy has to achieve perfect balance of Ca, P and PTH

Vitamin D metabolism

Case: 20 yr old man w CRD-5

Just started dialysis; his monthly routine results:

Lab:

■ PO4: 2.12 mmol/L

■ Ca: 2.32 mmol/L

■ PTH: 93 pmol/L

■ What should be fixed first?

