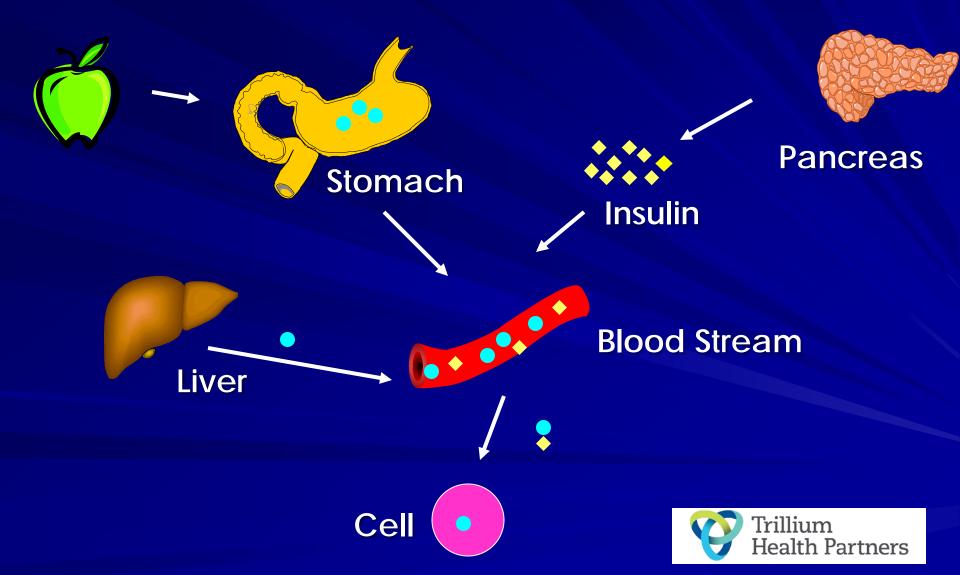
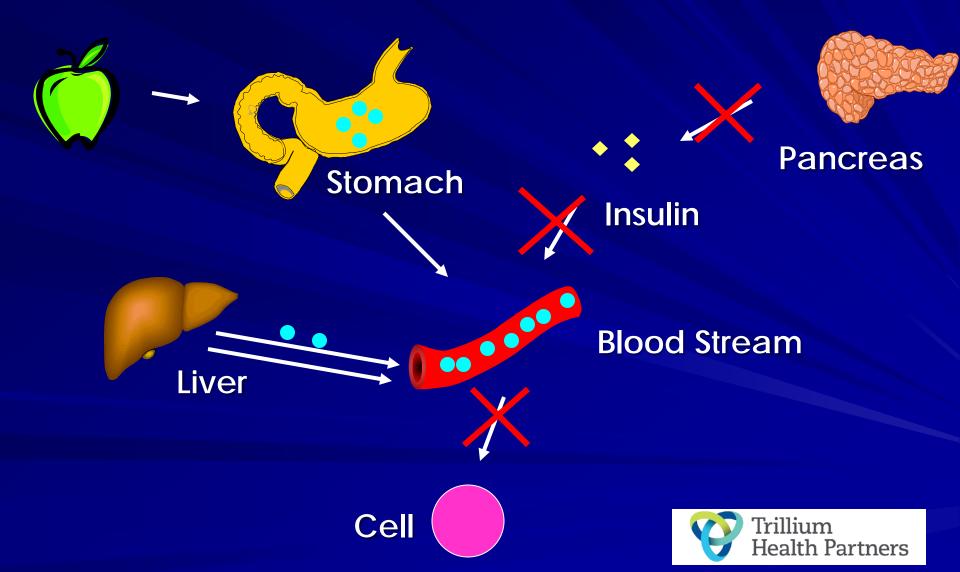
Overview of Diabetes in Renal Disease

Diabetes Management Centre
Trillium Health Partners

Jacquie Tanaka-Sibley, RN, CDE, CPT


Learning Objectives

To understand:


- Causes and progression of diabetes
- Goals and tools of diabetes management
- New treatments for diabetes

What Happens When you Eat?

What is Diabetes?

Types of Diabetes

- Type 1
- Type 2
- Prediabetes
- Gestational Diabetes

Types of Diabetes – Type 2

- Not enough insulin is being made or the insulin is not working properly pills or insulin injections
- 90% of all people with diabetes have Type 2 diabetes
- Majority are insulin resistant
- 50% have complications at diagnosis

Risk Factors for Type 2

- Family history
- High risk populations
- Over 40
- Overweight/obesity
- Sedentary
- Hx of Gestational diabetes or large baby
- others

Diagnosis:

FBS less than 6.1

2 hrs after meals under 7.8

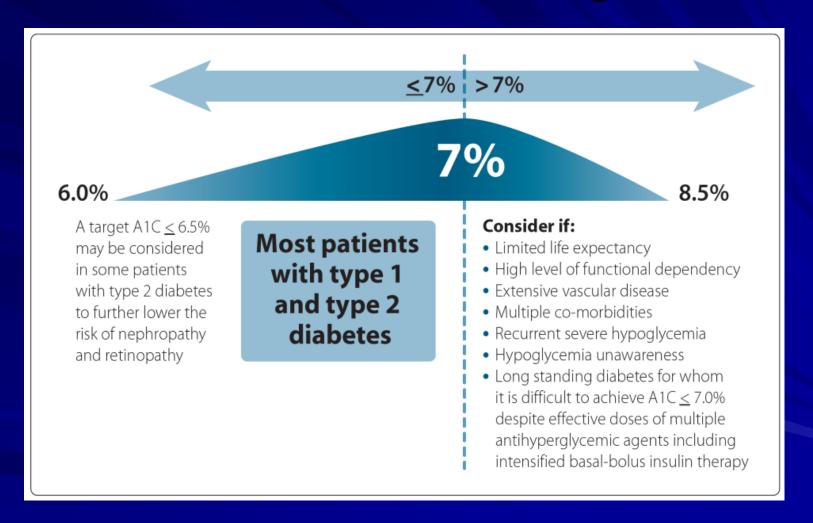
No Diabetes

PreDiabetes

FBS 6.1 – 6.9

2 hrs after meals 7.8 – 11.0

Diabetes.


FBS 7.0 or over

2 hrs after meals over 11.0

A1C ≥ 6.5%

Individualized Targets

What is the A1C?

Blood test
 which shows
 average blood
 sugar over
 past 3 months

What is your A1C (%) ?	Your Average Blood Sugar (mmol/l)
13%	18 - 19
12	16 - 17
11	14 - 15
10	13 - 14
9	11 - 12
8	10 - 11
7	8 - 9
6	7

Translating the hemoglobin A1c assay into estimated average glucose values

David M. Nathan, Judith Kuenen, Rikke Borg, Hui Zheng, David Schoenfeld, and Robert J. Heine, for the A1c-Derived Average Glucose (ADAG) Study Group. Diabetes Care 2008. Average Blood Glucose (mmol) = 1.59 x A1C - 2.59

Complications

- Prevention of complications is the ultimate goal
- High blood sugar damages the blood vessels
- Complications develop over 10-20 years
- Good blood glucose control is the key

Complications

Stroke

Heart

Digestion

Nervous System

Feet

Eyes
Teeth & Gums

Kidneys

Sexual Dysfunction

Arteries

Managing Diabetes

Exercise

Medications

F Ε S Е

CDA 2013 Clinical Practice Guidelines

AT DIAGNOSIS OF TYPE 2 DIABETES

A1C <8.5%

A1C ≥8.5%

Symptomatic hyperglycemia with metabolic decompensation

If not at glycemic target (2-3 mos)

Start / Increase metformin

Start metformin immediately

Consider initial combination with another antihyperglycemic agent

Initiate insulin +/- metformin

If not at glycemic targets

Add an agent best suited to the individual:

Patient Characteristics

Degree of hyperglycemia
Risk of hypoglycemia
Overweight or obesity
Comorbidities (renal, cardiac, hepatic)
Preferences & access to treatment
Other

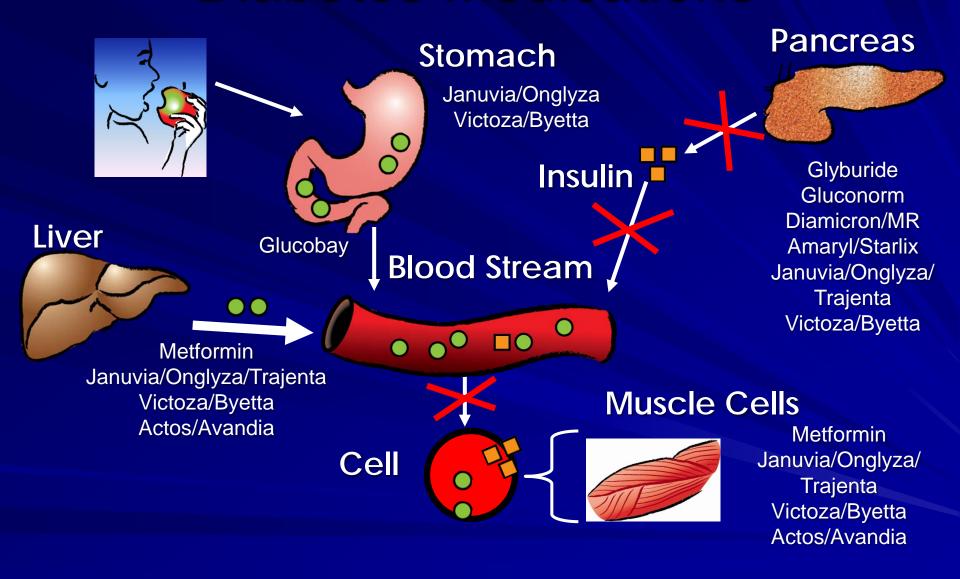
Agent Characteristics

BG lowering efficacy and durability
Risk of inducing hypoglycemia
Effect on weight
Contraindications & side-effects
Cost and coverage
Other

Canadian Diabetes Association Clinical Practice Guidelines Expert Committee. Canadian Diabetes Association 2013 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada. Can J Diabetes 2013;37(suppl 1):S1-S212

See next page...

Add an agent best suited to the individual (agents listed in alphabetical order):					
Class	Relative A1C lowering	Hypo- glycemia	Weight	Other therapeutic considerations	Cost
Alpha-glucosidase inhibitor (acarbose)	+	Rare	neutral to ↓	Improved postprandial control, GI side effects	\$\$
Incretin agents: DPP-4 Inhibitors GLP-1 receptor agonists	## ## to ###	Rare Rare	neutral to ↓	GI side effects	\$\$\$ \$\$\$\$
Insulin	+++	Yes	††	No dose ceiling, flexible regimens	\$-\$\$\$\$
Insulin secretagogue: Meglitinide Sulfonylurea	**	Yes Yes	† †	Less hypoglycemia in context of missed meals but usually requires TID to QID dosing Gliclazide and glimepiride associated with less hypoglycemia than glyburide	\$\$ \$
TZD	++	Rare	††	CHF, edema, fractures, rare bladder cancer (pioglitazone), cardiovascular controversy (rosiglitazone), 6-12 weeks required for maximal effect	SS
Weight loss agent (orlistat)	+	None	+	GI side effects	\$\$\$


If not at glycemic target

- Add another agent from a different class
 - Add/Intensify insulin regimen

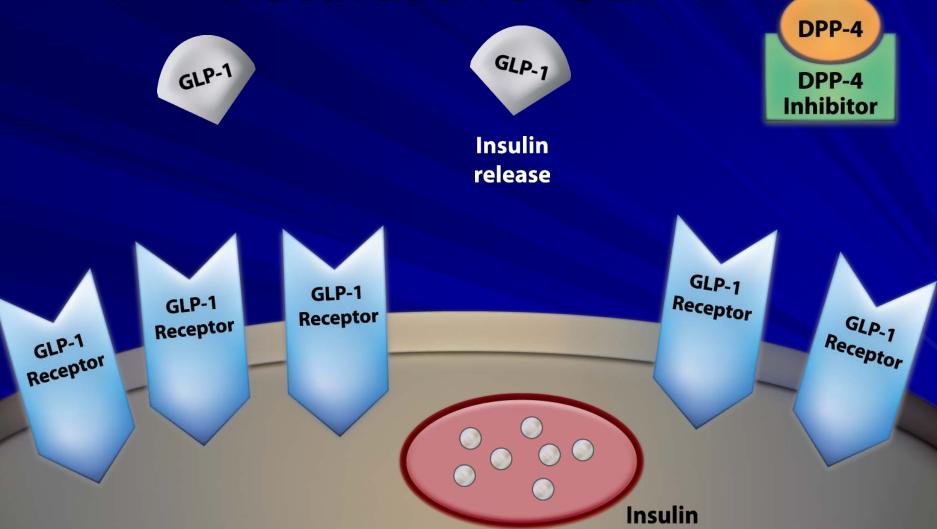
Make timely adjustments to attain target A1C within 3-6 months

Diabetes Medications

GLP-1 Actions in Peripheral Tissues

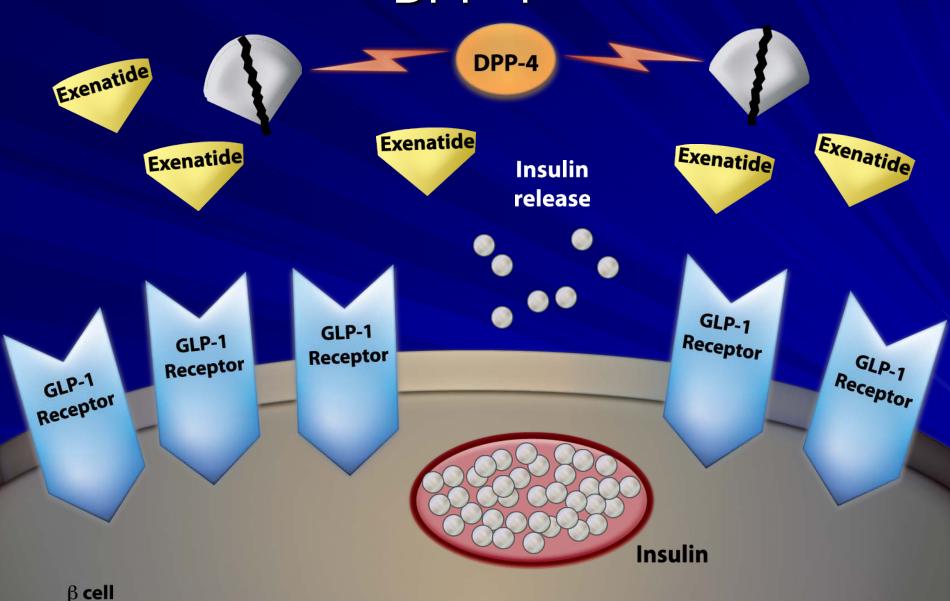
DPP4 Inhibitors

- Weight neutral
- Prevents breakdown of natural GLP-1
- Indirectly increase insulin release (glucose dependant)
- Do not cause hypoglycemia
- Covered by Ontario Drug Benefits/third party
- Januvia/Onglyza indicated with insulin
- Renal dosing available
- Onglyza, Januvia, Trajenta
- Cost: \$2.64 2.97/day

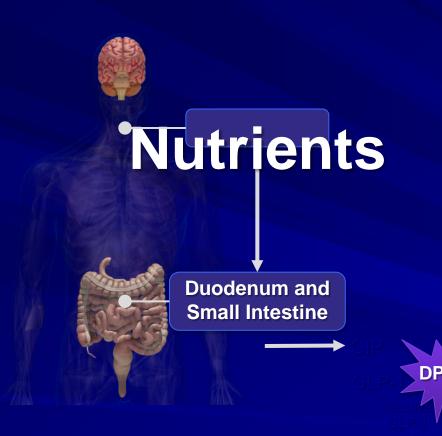


GLP-1 Agonists

- Weight loss/weight neutral
- Directly increase insulin release (glucose dependant)
- Do not cause hypoglycemia
- Not covered by Ontario Drug Benefits
- Now indicated with insulin
- Injectable
- Victoza (1/day)/Byetta (2/day)
- ~ \$5-\$6/day



DPP-4 Inhibitors Prevent the Inactivation of GLP-1

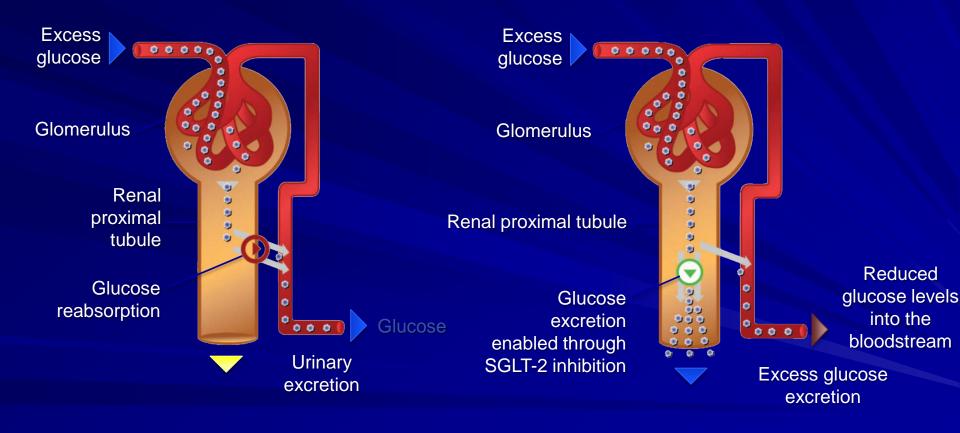


β cell

GLP-1 analogues are Not Inactivated by DPP-4

DPP-4 Inhibitors Increase Endogenous GLP-1 Levels

- DPP-4 is the major GLP-1 inactivator¹
 - GLP-1 and GIP stimulate insulin secretion²
 - GLP-1 suppresses glucagon secretion²
- DPP-4 inhibitors increases the concentrations of active incretin hormones³
 - Stimulate the release of insuling in a glucose-dependent manner³
 - Decrease the levels of glucagon in the circulation³


Rosenstock J, Zinman B. Curr Opin Endocrinol Diabetes Obes. 2007;14:98-107.
 Drucker DJ. Diabetes Care. 2003;26:2929-2940.

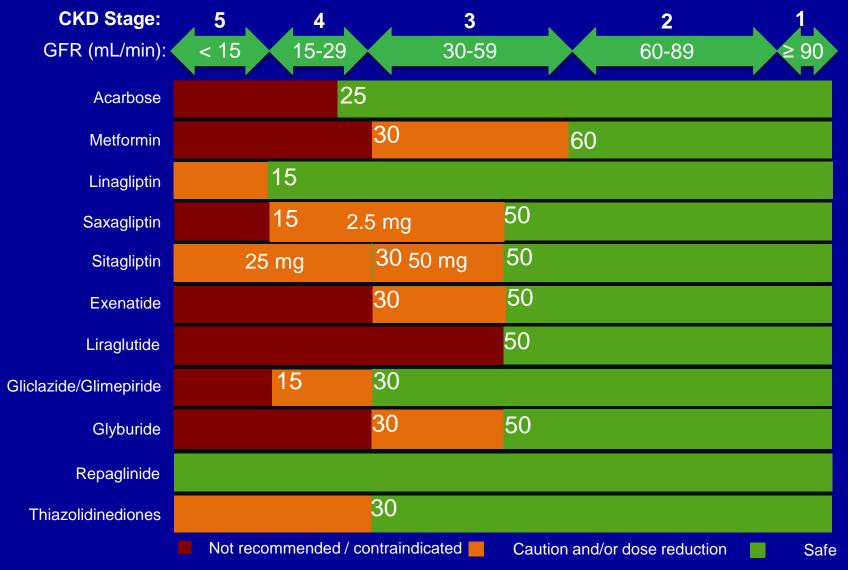
Renal SGLT-2 Inhibition: A Novel Approach to T2DM

Patients with Type 2 Diabetes

Type 2 Diabetes with SGLT-2 Inhibition

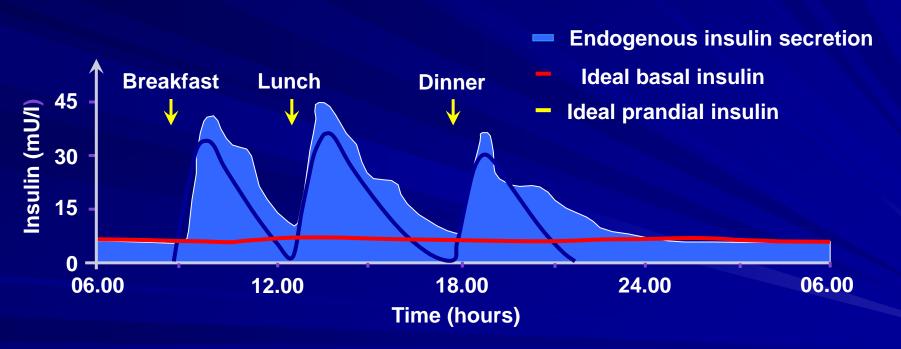
Summary: SGLT-2 Inhibition

- Inhibition of SGLT-2 in patients with diabetes results in decreased glucose reabsorption and increased glucosuria
- Lowering the renal threshold for glucose provides an insulin-independent mechanism for correction of hyperglycemia
- When blood glucose levels are normalized there is decreased gluconeogenesis and total hepatic glucose production



SGLT-2 Take Away Messages

- 1. Selective SGLT-2 inhibitors reduce blood glucose levels due to increased renal excretion of glucose
- SGLT-2 inhibitors have been shown to be effective in lowering glucose levels for a variety of T2DM patients including as an addon to monotherapy, add-on to metformin or add-on to insulin
- 3. Potential advantages of SGLT-2 inhibitors include weight loss, low risk of hypoglycemia, and modest blood pressure lowering
- 4. Based on clinical data to date, there are no signals of major safety concerns
- 5. Adverse events requiring further study:
 - Increase in fungal genital infections
 - Potential volume depletion in vulnerable patients
- 6. Results of ongoing studies awaited



Antihyperglycemic Agents and Renal Function

Adapted from: Product Monographs as of March 1, 2013; CDA Guidelines 2008; and Yale JF. J Am Soc Nephrol 2005; 16:S7-S10. guidelines.diabetes.ca | 1-800-BANTING (226-8464) | diabetes.ca

Physiological Insulin Secretion

Adapted from Kruszynska YT, et al. Diabetologia 1987;30:16-21.

Patient Barriers to Insulin

- Fear of....
 - Low blood sugar (defensive eating)
- Sense of failure
- Loss of control
- Depression
- Time consuming
- Cost

Physician Barriers to Care

- Knowledge and understanding of diabetes management may be limited or outdated
- Limited appointment time to offer and teach appropriate insulin therapy.
- Follow-up dose adjustment is complex and time consuming

Insulin Regimens

- Once daily (basal insulin)
- Twice daily (premix insulin)
- Basal Plus (basal plus rapid a largest meal(s))
- Four times daily (basal/bolus)

Hypoglycemia

- When blood sugar is less than 4.0 mmol/L
- Signs and symptoms
- Treatment
- Causes

Thank You!

